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IR Evaluation
• Evaluation is any process which produces a 

quantifiable measure of a system’s performance. 

• In IR, there are many things we might want to measure: 

➡ Are we presenting users with relevant documents? 

➡ How long does it take to show the result list? 

➡ Are our query suggestions useful? 

➡ Is our presentation useful? 

➡ Is our site appealing (from a marketing perspective)?



IR Evaluation
• The things we want to evaluate are often subjective, so it’s 

frequently not possible to define a “correct answer.” 

• Most IR evaluation is comparative: “Is system A or system 
B better?” 

➡ You can present system A to some users and system B 
to others and see which users are more satisfied (“A/B 
testing”) 

➡ You can randomly mix the results of A and B and see 
which system’s results get more clicks 

➡ You can treat the output from system A as “ground truth” 
and compare system B to it
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Retrieval Effectiveness
• Retrieval effectiveness is the 

most common evaluation task 
in IR 

• Given two ranked lists of 
documents, which is better? 

➡ A better list contains more 
relevant documents 

➡ A better list has relevant 
documents closer to the top 

• But what does “relevant” mean 
and how can we measure it?
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Relevance
• The meaning of relevance is actively debated, and effects how 

we build rankers and choose evaluation metrics. 

• In general, it means something like how “useful” a document is 
as a response to a particular query. 

• In practice, we adopt a working definition in a given setting 
which approximates what we mean. 

➡ Page-finding queries: there is only one relevant document; 
the URL of the desired page. 

➡ Information gathering queries: a document is relevant if it 
contains any portion of the desired information.



Ambiguity of Relevance
• The ambiguity of relevance is closely tied to the ambiguity of 

a query’s underlying information need 

• Relevance is not independent of the user’s language fluency, 
literacy level, etc. 

• Document relevance may depend on more than just the 
document and the query. (Isn’t true information more relevant 
than false information? But how can you tell the difference?) 

• Relevance might not be independent of the ranking: if a user 
has already seen document A, can that change whether 
document B is relevant?



Binary Relevance
• For now, let’s assume that a 

document is entirely relevant 
or entirely non-relevant to a 
query. 

• This allows us to represent a 
ranking as a vector of bits 
representing the relevance of 
the document at each rank. 

• Binary relevance metrics can 
be defined as functions of this 
vector.
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Recall
• Recall is the fraction of all 

possible relevant documents 
which your list contains. 

!

!

!

• Recall@K is almost identical, 
but truncates your list to the 
top K elements first.
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Precision
• Precision is the fraction of 

your list which is relevant. 

!

!

!

• Precision@K truncates your 
list to the top K elements.
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Recall vs. Precision
• Neither recall nor precision is sufficient to describe a 

ranking’s performance. 

➡ How to get perfect recall: retrieve all documents 

➡ How to get perfect precision: retrieve the one best 
document 

• Most tasks find it relatively easy to get high recall or high 
precision, but doing well at both is harder. 

• We want to evaluate a system by looking at how precision 
and recall are related.



F Measure
• The F Measure is one way to combine precision and recall 

into a single value. 

!

• We commonly use the F1 Measure: 

!

• F1 is the harmonic mean of precision and recall. 

• This heavily penalizes low precision and low recall. Its 
value is closer to whichever is smaller.

F (~r,�) =
(�2 + 1) · prec(~r) · recall(~r)
�2 · prec(~r) + recall(~r)

F1(~r) = F (~r,� = 1) =
2 · prec(~r) · recall(~r)
prec(~r) + recall(~r)



R-Precision
• Instead of using a cutoff based on the number of documents, use a 

cutoff for precision based on the recall score (or vice versa) 

!

• As you move down the list: 

➡ recall increases monotonically 

➡ precision goes up and down, with an overall downward trend 

• R-Precision is the precision at the point in the list where the two 
metrics cross. 

prec@r(~s, r) = prec@k(~s, k : recall@k(~s, k) = r)

recall@p(~s, p) = recall@k(~s, k : prec@k(~s, k) = p)

rprec(~s) = prec@k(~s, k : recall@k(~s, k) = prec@k(~s, k))



Average Precision
• Average Precision is the mean of prec@k for every k 

which indicates a relevant document. 

!

!

• Example: 
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Precision-Recall Curves
• A Precision-Recall Curve is a plot of precision versus 

recall at the ranks of relevant documents. 

• Average Precision is the area beneath the PR Curve. 

!

!
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Graded Relevance
• So far, we have dealt only with binary relevance 

• It is sometimes useful to take a more nuanced view: 
two documents might both be relevant, but one 
might be better than the other. 

• Instead of using relevance labels in {0,1}, we can 
use different values to indicate more relevant 
documents. 

• We commonly use {0, 1, 2, 3, 4}



Ambiguity of 
Graded Relevance

• This adds its own ambiguity problems. 

• It’s hard enough to define “relevant vs. non-relevant,” let alone 
“somewhat relevant” versus “relevant” versus “highly relevant.” 

• Expert human judges often disagree about the proper 
relevance grade for a document. 

➡ Some judges are stricter, and only assign high grades to the 
very best documents. 

➡ Some judges are more generous, and assign higher grades 
even to weaker documents.



A Graded Relevance Scale
• Here is one possible scale to use. 

➡ Grade 0: Non-relevant documents. These documents do not answer the 
query at all (but might contain query terms!) 

➡ Grade 1: Somewhat relevant documents. These documents are on the right 
topic, but have incomplete information about the query. 

➡ Grade 2: Relevant documents. These documents do a reasonably good job 
of answering the query, but the information might be slightly incomplete or 
not well-presented. 

➡ Grade 3: Highly relevant documents. These documents are an excellent 
reference on the query and completely answer it. 

➡ Grade 4: Nav documents. These documents are the “single relevant 
document” for navigational queries.



Cumulative Gain
• Cumulative Gain is the total 

relevance score accumulated at a 
particular rank. 

!

!

• This tries to measure the gain a 
user collects by reading the 
documents in the list. 

• Problems: CG doesn’t reflect the 
order of the documents, and 
treats a 4 at position 100 the same 
as a 4 at position 1.
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Discounted Cumulative Gain
• Discounted Cumulative Gain 

applies some discount function to 
CG in order to punish rankings that 
put relevant documents lower in the 
list. 

!

!

• Various discount functions are used, 
but log() is fairly popular. 

• A problem: the maximum value 
depends on the distribution of 
grades for this particular query, so 
comparing across queries is hard.
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Normalized Discounted 
Cumulative Gain

• Normalized Discounted 
Cumulative Gain divides DCG 
by the best possible value for 
that query, the Ideal DCG 
(IDCG). 

!

!

• IDCG(k) is calculated by sorting 
all the documents in the 
collection in order of decreasing 
relevance grade, and then 
calculating DCG at cutoff k.
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Using Multiple Queries
• It isn’t usually fair to compare system performance on 

a single query. What if the better system just got lucky? 

• Instead, we commonly run both systems on a 
collection of different queries and compare metric 
values across all queries. 

➡ Individual queries can still be useful. Look for 
distinctive queries: a system’s best or worst query, 
the queries for which the overall worse system beats 
the overall better system, etc.



Mean Metric Values
• One common way to combine information across 

queries is simply to take the mean of the metric 
over the queries. 

• Mean Average Precision (MAP) is the average AP 
value for a system across many queries. 

➡ This is one of the most popular evaluation 
metrics when using binary relevance.



Significance Tests
• Suppose System A beats System B on just one query. Do we believe it’s 

better? 

• Maybe System B would beat System A on some other query. 

• How many queries do we need to try before we can be confident of the 
result? 

➡ Empirical results show that 25 queries are often enough 

➡ TREC generally uses at least 50 queries 

• What if the systems are identical for all but one query, for which A is 
better? A would have a higher average than B… 

• What if A’s average is just 0.0001% higher than B’s average? Is it better?



• Statistical significance tests help us determine whether 
the observed differences in two systems are likely to be 
due to chance (or “luck”). 

• One-Sample Tests: “Is the system’s response time 
under one second?” 

• Two-Sample Tests: “Does the system perform equally 
well on these two queries?” 

• Paired-Sample Tests: “Is System A better than System 
B?”

Significance Tests



Statistical Terminology
• Populations are sets of objects of interest 

➡ e.g. all possible queries 

• Samples are objects drawn from the population 

➡ e.g. the particular queries you’re testing with 

• Statistics are functions of data 

➡ e.g. A system’s AP on a particular query 

• We calculate our statistics on a sample of the population to test a 
hypothesis (e.g. “System A is better than System B”) for the entire 
population.



Hypothesis Testing
• A significance test allows us to measure the probability that a result 

we observe happened by chance. 

• We compare the probability of two possible hypotheses: 

➡ The null hypothesis: “Systems A and B are not different” 

➡ The alternative hypothesis: “System A is better than System B” 

• The power of a hypothesis test is the probability that it will correctly 
reject the null hypothesis. 

• A test’s power can be increased by increasing the number of 
queries in the experiment.



Hypothesis Testing
1.Compute the effectiveness measure for every query for both 
systems. 

2.Compute a test statistic based on comparing the two systems’ 
measures for each query. The details of this step depend on the 
particular test you’re using. 

3.The test statistic is used to compute a P-value: the probability that 
a test statistic value at least that extreme could be observed if the 
null hypothesis were true. The smaller the p-value is, the more 
confidently we can reject the null hypothesis. 

4.We reject the null hypothesis if the p-value is smaller than some 
predetermined value, the significance level. The significance level 
is small: the smaller, the better. It should be at most 0.05.



• The distribution of possible test statistic values, 
assuming that the null hypothesis is true: 

!

!

!

!

• The shaded area is the region of rejection

One-Sided Test



Example Experimental 
Results



t-Test
• Assumes that the difference between the 

effectiveness values is a sample from a normal 
distribution 

• The null hypothesis is that the mean of the 
distribution of differences is zero 

• The test statistic is: 

• Example:

t =
B �A

�B�A
·
p
N

B �A = 21.4,�B�A = 29.1; t = 2.33, p-value = 0.02



Wilcoxon Signed-Ranks Test
• A nonparametric test based on the differences between 

effectiveness scores 

• Test statistic is:  

• N is the number of differences. Ri is a signed-rank. 

• To compute the signed-ranks, the differences are ordered 
by their absolute values (increasing) and then assigned 
rank values. 

• Rank values are then given the sign of the original 
difference.

w =
NX

i=1

Ri



Wilcoxon Example
• 9 non-zero differences are (in rank order of absolute 

value): 

2, 9, 10, 24, 25, 25, 41, 60, 70 

• Signed-ranks: 

-1, +2, +3, -4, +5.5, +5.5, +7, +8, +9 

• Test statistic: 

w = 35, p-value = 0.025
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Test Collections
• Several organizations have built standard 

collections of documents, queries, and relevance 
judgements for use in IR evaluation. 

• These test collections allow the comparison of 
systems across many teams and publications by 
providing a standard measure of performance. 

• These collections are used more in research than 
industry, as we’ll see later.



TREC
• The Text Retrieval Conference was established in 1992 

to construct large-scale IR test collections 

➡ Run by NIST’s Information Access Division 

➡ Initially sponsored by DARPA as part of Tipster 
program 

• Probably the best-known IR evaluation setting, with 
participants from dozens of countries 

• Proceedings are available from http://trec.nist.gov



TREC Tracks
• TREC is organized into roughly a dozen independent research tracks each 

year, often run by volunteers outside of NIST. 

➡ November: tracks approved by TREC community 

➡ Winter: track members finalize format for track 

➡ Spring: researchers train systems based on track specification 

➡ Summer: researchers carry out formal evaluation (usually “blind” – the 
researchers do not know the answer) 

➡ Fall: NIST carries out evaluation 

➡ November: Group meeting (at NIST) to find out how well your 
submission did, and what other track members tried



TREC Tracks
• Examples of TREC tracks: 

➡ Ad-hoc retrieval: classic keyword document search. 

➡ Question answering: responding to questions with 
factoids instead of with documents. 

➡ Crowdsourcing test collections: can we collect accurate 
relevance grades from anonymous crowd workers? 

➡ Temporal summarization: How much was known about 
event e at time t?



TREC Topic Example



Historically Important 
Collections

• CACM: titles and abstracts from the Communications of the 
ACM from 1958-1979. Queries and relevance judgements 
generated by computer scientists. 

• AP: Associated Press newswire documents from 1988-1990 
(from TREC disks 1-3). Queries are the title fields from 
TREC topics 51-150. Topics and relevance judgements 
generated by government information analysts. 

• GOV2: Web pages crawled from websites in the .gov 
domain during early 2004. Queries are the title fields from 
TREC topics 701-850. Topics and relevance judgements 
generated by government analysts.



Historically Important 
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Recent Collections
• TREC8 (1999): A very thoroughly-evaluated collection of 

documents and queries. Considered to have very accurate 
relevance scores for the documents, but the documents and 
queries are not ideal for modern web search. 

• CLUEWEB09 (2009): A 25TB crawl of the web containing 
1,040,809,705 web pages in 10 languages. Fewer queries 
and relevance grades available (largely because of its scale). 

• CLUEWEB12 (2012): A collection of 733,019,372 English web 
pages crawled in early 2012. Fewer queries and relevance 
grades available. Used by many current TREC tracks.



Pooling
• The large size of recent collections makes judging all documents for a 

query impractical. 

• At TREC, a technique called pooling is used to compare the performance 
of several submitted runs. 

➡ Each team submits one or more rankings produced by their system(s). 

➡ The top k results from each ranking are merged into a pool. 

➡ Duplicates are removed. 

➡ The documents are presented to human judges in random order. 

• This produces a large number of relevance judgements for each query, 
although still incomplete
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Search Engine Evaluation
• Consider the context of a web search engine. 

➡ Recall is not very important: there are usually far too many 
relevant documents for a user to see or process all of them. 

➡ In most cases, the user won’t even see the rankings after the 
first page. 

• Search engines are often interested in precision at the top few 
ranks: prec@10, or even prec@3. 

• Search engines also have access to different kinds of data, 
which allows them to develop custom (proprietary, often secret) 
metrics.



Reciprocal Rank
• The Reciprocal Rank (RR) is 

the reciprocal of the rank of 
the first relevant document. 

• The Mean Reciprocal Rank 
(MRR) is the RR averaged 
across many queries. 

• This is very sensitive to rank 
position, and useful when the 
user will only see a few 
documents.
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Leveraging Users
• Search engines also have a resource most researchers don’t: 

massive numbers of daily users 

• This allows them to more directly compare user satisfaction of 
different systems: 

➡ Do users click on the top documents, or further down the list? 

➡ Do users come back to the results and click other documents? 

➡ How often do users reformulate their queries? 

• These values can be averaged across many users and queries 
for each system to compare the systems.



A/B Testing
• One way to compare two 

systems is to randomly assign 
users to one of the systems 
and compare user satisfaction 
between groups. 

• This is known as A/B Testing, 
and can be used to compare 
whatever metrics you desire.
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Interleaving Results
• Another way to compare to 

systems is to randomly 
interleave their results, and 
measure which system’s 
results get clicked more often. 

• A new random interleaving is 
chosen for each user, so we 
can average out the benefits a 
system may gain from one 
particular ordering.
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Search Engine Performance
• Many other metrics are of interest to search engines: 

➡ Elapsed indexing time: How long does it take to index a document? 

➡ Indexing processor time: How much CPU time does the indexing 
process take? (Ignores time spent waiting for I/O.) 

➡ Indexing temporary space: The amount of transient disk space used 
when creating an index. 

➡ Index size: The amount of disk space used for the index overall. 

➡ Query throughput: number of queries processed per second. 

➡ Query latency: The amount of time a user must wait before receiving a 
response to a query.



Summary
• No single metric is ideal for every situation. 

• You usually want to look at a combination of metrics to 
examine different aspects of your system. 

• It’s important to use aggregated metrics across many 
queries and use statistical significance tests. 

• It’s also important to analyze performance on 
individual queries to understand where your system 
has the most trouble


